- dereceden bir bilinmeyenli denklem aşağıdaki gibi gösterilir:
ax^2 + bx + c = 0
Burada, a, b ve c sabit sayılardır. Bu denklemin çözümü için genellikle “ikinci dereceden denklem çözme formülü” olarak bilinen şu formül kullanılır:
x = (-b ± √(b^2 – 4ac)) / 2a
Bu formülde, “+” ve “-” işaretleri birbirinin alternatifidir, yani iki farklı çözüm için kullanılırlar. “√” işareti karekök ifade eder.
Aşağıda, C# programlama dilinde 2. dereceden bir bilinmeyenli denklemin çözümü için bir örnek verilmiştir:
csharp
using System;
class Program
{
static void Main()
{
Console.WriteLine(“2. dereceden bir denklemin katsayılarını girin:”);
Console.Write(“a = “);
double a = double.Parse(Console.ReadLine());
Console.Write(“b = “);
double b = double.Parse(Console.ReadLine());
Console.Write(“c = “);
double c = double.Parse(Console.ReadLine());
double delta = b * b - 4 * a * c;
if (delta > 0)
{
double x1 = (-b + Math.Sqrt(delta)) / (2 * a);
double x2 = (-b - Math.Sqrt(delta)) / (2 * a);
Console.WriteLine("Denklemin iki farklı çözümü vardır:");
Console.WriteLine("x1 = {0}", x1);
Console.WriteLine("x2 = {0}", x2);
}
else if (delta == 0)
{
double x = -b / (2 * a);
Console.WriteLine("Denklemin tek bir çözümü vardır:");
Console.WriteLine("x = {0}", x);
}
else
{
Console.WriteLine("Denklemin reel sayılar arasında çözümü yoktur.");
}
}
}
Bu program kullanıcıdan a, b ve c katsayılarını alır ve önce delta adlı değişkeni hesaplar. Delta, denklemin çözümünde kullanılacak diskriminanttır ve b^2 – 4ac formülü ile hesaplanır. Ardından, delta’nın değerine göre çeşitli durumlar ele alınır:
Delta pozitif ise, denklemin iki farklı gerçek çözümü vardır. Bu çözümler, ikinci dereceden denklem çözme formülü kullanılarak hesaplanır ve ekrana yazdırılır.
Delta sıfır ise, denklemin tek bir gerçek çözümü vardır. Bu çözüm, yine formül kullanılarak hesaplanır ve ekrana yazdırılır.
Delta negatif ise, denklemin gerçek sayılar arasında bir çözümü yoktur. Bu durumda program, ekrana bir hata mesajı yazdırır.